Calculus A for Economics

Solutions to Exercise Number 2

1) a) $(f \circ g)(x)=f(g(x))=f\left(x^{2}\right)=2 x^{2}+5 ; \quad(g \circ f)(x)=g(f(x))=g(2 x+5)=(2 x+5)^{2}$.
b) $(f \circ g)(x)=f(g(x))=\frac{1}{g(x)}=\frac{1}{\frac{1}{x}}=x ; \quad(g \circ f)(x)=g(f(x))=\frac{1}{f(x)}=\frac{1}{\frac{1}{x}}=x$.
c) $(f \circ g)(x)=f(g(x))=e^{g(x)+1}=e^{\ln x+1}=e \cdot e^{\ln x}=e x ; \quad(g \circ f)(x)=g(f(x))=\ln (f(x))=$ $\ln \left(e^{x+1}\right)=x+1$.
2) a) $(f \circ g \circ h)(x)=f(g(h(x)))=f(g(\sqrt{x}))=f\left(\frac{\sqrt{x}}{4}\right)=4 \frac{\sqrt{x}}{4}-8=\sqrt{x}-8$.
b) $(f \circ g \circ h)(x)=f(g(h(x)))=f(g(\sqrt{x}))=f\left(e^{\sqrt{x}}\right)=\frac{1}{e^{\sqrt{x}}}$.
c) $(f \circ g \circ h)(x)=f(g(h(x)))=\ln (g(h(x)))=\ln \left((h(x))^{2}+3\right)=\ln \left(\frac{1}{x^{2}}+3\right)$.
3) a) Write $y=x^{2}+1$. Interchange x and y to get $x=y^{2}+1$. Hence $y^{2}=x-1$. Since we cannot recover y as a function of x, the function $f^{-1}(x)$ does not exists for all x. However, we can write $y=\sqrt{x-1}$ which is valid for $x \geq 1$. Thus in the domain $x \geq 1$ the function $y=\sqrt{x-1}$ is the inverse of $f(x)$. We can do a similar construction with $y=-\sqrt{x-1}$.
b) Write $y=\sqrt[3]{x^{2}+1}$. Consider $x=\sqrt[3]{y^{2}+1}$. This can be written as $y^{2}=x^{3}-1$, or $y=\sqrt{x^{3}-1}$. This is defined only for $x \geq 1$. Thus $f^{-1}(x)$ does not exists for all x, but only when $x \geq 1$.
c) Write $y=\frac{2 x+3}{x-1}$. Thus $x=\frac{2 y+3}{y-1}$. Recovering y we get $y=\frac{x+3}{x-2}$. Thus $f^{-1}(x)$ exists for all $x \neq 1,2$.
d) Write $y=10^{x+1}$ and $x=10^{y+1}$. Thus $y+1=\log _{10} x$ and $y=\log _{10} x-1$. Thus $f^{-1}(x)$ exists for $x>0$.
e) Write $y=1+\ln (x+2)$. This is valid for $x>-2$. In this domain we have $x=1+\ln (y+2)$ or $x-1=\ln (y+2)$. Hence $y+2=e^{x-1}$ or $y=e^{x-1}-2$.
f) Write $y=\frac{2^{x}}{1+2^{x}}$. Since 2^{x} is always positive, the function is defined for all x. Write $x=\frac{2^{y}}{1+2^{y}}$ or $x\left(1+2^{y}\right)=2^{y}$. From this we get $x=2^{y}(x-1)$ or $2^{y}=\frac{x}{x-1}$. Hence $y=\log _{2} \frac{x}{x-1}$. This function is defined for $x>1$.
4) $f(f(x))=\sqrt[n]{a-(f(x))^{n}}=\sqrt[n]{a-\left(\sqrt[n]{a-x^{n}}\right)^{n}}=\sqrt[n]{a-\left(a-x^{n}\right)}=\sqrt[n]{x^{n}}=x$. From this we deduce that in the domain of definition of $f(x)$ we get $f^{-1}(x)=f(x)$. The domain of definition depends on n. For example if n is odd, it is all $x>0$. If n is even, we have $0<x<a$.
5) a) We must have $\frac{x}{4}>0$. Hence $x>0$ is the domain of definition.
b) We have $\frac{1-2 x}{4}>0$. Thus $1-2 x>0$ or $x<\frac{1}{2}$ is the domain of definition.
c) First we have $4-x^{2} \neq 0$ or $x \neq \pm 2$. Then we need $x^{3}-x>0$. This is the same as $(x-1) x(x+1)>0$. The product of three numbers is positive if all numbers are positive, or if two of them are negative and the third is positive. Going over all possibilities we get $-1<x<0$ or $1<x$. From this domain we need to eliminate $x= \pm 2$. Thus, the domain of definition is $-1<x<0$ or $1<x<2$ or $x>2$.
6) See separate page.
7) See separate page.
8) We have

$$
f(f(x))=f\left(\frac{a x+b}{c x+d}\right)=\frac{a\left(\frac{a x+b}{c x+d}\right)+b}{c\left(\frac{a x+b}{c x+d}\right)+d}=\frac{\left(a^{2}+b c\right) x+b(a+d)}{c(a+d) x+c b+d^{2}}
$$

This expression must equal to x. Thus we get the equality $\left(a^{2}+b c\right) x+b(a+d)=x(c(a+$ $\left.d) x+c b+d^{2}\right)$. Since this holds for all x then the coefficients of the corresponding powers of x must equal in both sides. Thus we get the three equations $b(a+d)=0, c(a+d)=0$ and $a^{2}=d^{2}$. From the last equation we get two possibilities. First $a=-d$. In this case the other two equations are satisfied and we get as a solution the function $f(x)=\frac{a x+b}{c x-a}$. The second possibility is $a=d$. We may assume that they are not equal to zero, because this case was included in the case $a=-d$. Thus to satisfy the other two equations we get $b=c=0$. Thus we get another option which is $f(x)=x$.
9) The equation $f(g(x))=g(f(x))$ is equivalent to $g(x)+1=g(x+1)$. The function $g(x)=x$ is an example to a function which satisfies this last equation.
10) First notice that $f(x)$ is one to one. Indeed, suppose that $f\left(x_{1}\right)=f\left(x_{2}\right)$. If $x_{1} \geq 0$ and $x_{2}<0$, then $-x_{1}^{2}=1-x_{2}^{3}$ which is impossible since the left hand side is negative and the right hand side is positive. Therefore x_{1} and x_{2} are of the same sign. If both positive, then we get $-x_{1}^{2}=-x_{2}^{2}$ which implies $x_{1}= \pm x_{2}$. But since both numbers are of the same sign, we get $x_{1}=x_{2}$. Similarly, if both numbers are negative we get $x_{1}=x_{2}$. Hence $f^{-1}(x)$ exist. To find its inverse, consider $y=-x^{2}$. Interchanging x and y, we get $x=-y^{2}$, or $y=\sqrt{-x}$ which is well defined if $x \leq 0$. Similarly, let $y=1-x^{3}$. Interchanging x and y we get $x=1-y^{3}$ or $y=\sqrt[3]{1-x}$. This is defined for all x, however since the range of $1-x^{3}$, when $x<0$, is all $x>1$, then this is the domain we consider for $y=\sqrt[3]{1-x}$. To summarize, we have

$$
f^{-1}(x)= \begin{cases}\sqrt[3]{1-x}, & x>1 \\ \sqrt{-x}, & x \leq 0\end{cases}
$$

